Network Pharmacology and Molecular Docking Validation to Reveal the Pharmacological Mechanisms of Kangai Injection against Colorectal Cancer

Author:

Zheng Bo-Bo1,Wang Quan2ORCID,Yue Yumin1ORCID,Li Jiang3,Li Xiao-Jun1ORCID,Wang Xin4ORCID

Affiliation:

1. Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China

2. Laboratory of Surgical Oncology, Peking University People’s Hospital, Beijing, China

3. National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China

4. Department of Gastroenterology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China

Abstract

Background. Kangai injection is a traditional Chinese medicine (TCM) mixed by extracts from astragalus, ginseng, and kurorinone with modern technology. It is a commonly used antitumor injection in China, but the mechanism of Kangai injection in the treatment of colorectal cancer (CRC) is still unclear. The purpose of this study is to explore the mechanism of Kangai injection against CRC using network pharmacology and molecular docking technology. Methods. Targets of Kangai injection in CRC were predicted by SwissTargetPrediction and DisGeNET databases. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed by using the DAVID database. A component-disease-target gene-pathway network was constructed by Cytoscape 3.8.0 software. Results. 114 overlapping targets of Kangai injection and CRC were used to construct a PPI network, and the top 10 hub targets of Kangai injection were rated from high to low as TP53, VEGFA, EGFR, TNF, ESR1, STAT3, HSP90AA1, HDAC1, AR, and MMP9. The ingredient-target-disease interactive network was constructed, which included 22 compounds and 114 overlapping targets with 161 nodes and 707 edges. Entries of enrichment analysis were obtained based on P value (<0.05), which included 19 of GO-MF, 217 of GO-BP, 8 of GO-CC, and 13 KEGG. Molecular docking analysis showed that Kangai injection strongly interacted with top 10 hub target proteins. Conclusion. Network pharmacology intuitively showed the multicomponent, multiple targets, and multiple pathways of Kangai injection in the treatment of CRC. The molecular docking experiment verified that compounds of Kangai injection had good binding ability with top 10 hub target proteins as well.

Funder

Shaanxi Provincial People’s Hospital

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3