Energy Efficiency and Capacity Tradeoff in Cloud Radio Access Network of High-Speed Railways

Author:

Li Shichao12ORCID,Zhu Gang12ORCID,Lin Siyu12ORCID,Gao Qian12ORCID,Xiong Lei1ORCID,Xie Weiliang3,Qiao Xiaoyu3ORCID

Affiliation:

1. State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China

2. School of Electronic Information Engineering, Beijing Jiaotong University, Beijing 100044, China

3. Technology Innovation Center, China Telecom, Beijing 100000, China

Abstract

To meet the increasing demand of high-data-rate services of high-speed railway (HSR) passengers, cloud radio access network (C-RAN) is proposed. This paper investigates the tradeoff between energy efficiency (EE) performance and capacity in C-RAN of HSR. Considering that the train location can be predicted, we propose a predictable path loss based time domain power allocation method (PPTPA) to improve EE performance of HSR communication system. First, we consider that the communication system of HSR only bears the passenger information services (PISs). The energy-efficient power allocation problem with delay constraint is studied. The formulated problem is nonconvex. To deal with it, an equivalent convex problem is reformulated. Based on PPTPA, we propose an iterative algorithm to improve the EE performance. Second, we consider that the PISs and the train control services (TCSs) are all bore. A capacity optimization problem with joint EE and services transmission delay constraints is formulated. Based on PPTPA, we propose a hybrid power allocation scheme to improve the capacity of the system. Finally, we analyze the effect of small-scale fading on EE performance. The effectiveness of the proposed power allocation algorithm is validated by HSR channel measurement trace based emulation results and extensive simulation results.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3