Epithelial-Mesenchymal Transition Gene Signature Is Associated with Neoadjuvant Chemoradiotherapy Resistance and Prognosis of Esophageal Squamous Cell Carcinoma

Author:

Song Kewei1,Gu Baohong1,Ma Chenhui1ORCID,Wang Bofang1,Wang Na1,Yu Rong1,Chen Hao23ORCID

Affiliation:

1. The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China

2. Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China

3. Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou 730030, China

Abstract

Background. Neoadjuvant chemoradiotherapy (neo-CRT) in combination with surgery increases survival compared to surgery alone, as indicated by the esophageal squamous cell carcinoma (ESCC) treatment recommendations. However, the benefits of neo-CRT are diverse among patients. Consequently, the development of new biomarkers that correlate with neo-CRT might be important for the treatment of ESCC. Methods. The differentially expressed genes (DEG) between responsive and resistant samples from the GSE45670 dataset were obtained. On the TCGA dataset, survival analysis was performed to identify prognosis-related-EMT-genes. For EMT score model construction, lasso regression analysis in the TCGA cohort was used to identify the genes. In the TCGA-ESCC cohort, age, stage, and EMT score were used to construct a nomogram. Results. In total, 10 prognosis-related-EMT-genes were obtained. These 10 genes consisted of 6 risky genes and 4 protective genes. Based on the lasso analysis and univariate Cox regression, an EMT score model consisting of 7 genes (CLEC18A, PIR, KCNN4, MST1R, CAPG, ALDH5A1, and COX7B) was identified. ESCC patients with a high EMT score have a worse prognosis. These genes were differentially expressed between responsive and resistant patients and had a high accuracy for distinguishing resistant and responsive patients. Conclusions. The identified genes have the potential to function as molecular biomarkers for predicting ESCC patients’ resistance to neo-CRT. This research may aid in the elucidation of the molecular processes driving resistance and the identification of targets for improving the prognosis for ESCC.

Funder

Lanzhou University Second Hospital

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3