A DFT and TD-DFT Study of Two Hydralazine Derivatives for Organic Solar Cells and Nonlinear Optical Applications

Author:

Tamighang Remi Nkeih1,Ajifack Dodo Lydie1,Tasheh Stanley Numbonui1ORCID,Nkungli Nyiang Kennet1,Tsapi Charly Tedjeuguim2,Numbonui Ghogomu Julius12ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, The University of Bamenda, P. O Box 39, Bambili, Bamenda, Cameroon

2. Department of Chemistry, Research Unit of Noxious Chemistry and Environmental Engineering, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon

Abstract

In recent years, organic molecules have been the subject of in-depth research studies using in silico methods for their applications in solar cells and photonic devices. This study reports a theoretical investigation of the organic solar cell (OSC) and nonlinear optical (NLO) properties of (E)-1-(phthalazin-1-yl)-1-[(pyridin-2-yl)ethylidene]hydralazine (PPEH) and 1-[2-(1-(pyridine-3- yl)ethylidene)hydrazinyl]phthalazine (PEHP). The density functional theory (DFT) and its time-dependent extension (TD-DFT) were employed with the B2PLYP, M06-2X, BP86, CAM-B3LYP, and ω B97-XD functionals, alongside the def2-tzvp and def2-tzvpp basis sets. Geometrical and Frontier molecular orbital (FMO) analyses were performed. Reactivity descriptors, open circuit voltage (Voc), energy driving force (∆EL−L), light harvesting efficiencies (LHEs), NLO susceptibilities, and properties were also computed and discussed. The results show that PEPH and PPEH are good electron donor materials for organic solar cells as they possess high FMO energies, Vocs, ∆EL−Ls, and LHEs. Moreover, both molecules have static first and second hyperpolarizabilities as well as dynamic NLO responses that are on average 10 times greater than those of para-nitroaniline. PEPH and PPEH also exhibit properties such as second harmonic generation (SHG), electro-optic Pockels effect (EOPE), electric field-induced second harmonic generation (EFISHG), and optical Kerr effect (OKE). Indeed, these molecules are potential candidates for organic solar cells and NLO applications. Findings from this work may further accelerate the synthesis and development of green energy materials for optical solar cells and NLO applications in the future.

Funder

Ministère de l’Enseignement Supérieur, Republique du Cameroun

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3