Improving the Stability of Polymer Electrolyte Membrane Fuel Cells via Atomic Layer-Deposited Cerium Oxide

Author:

Kim Dong Joon1ORCID,Jeong Heon Jun2ORCID,Shim Jung Woo2ORCID,Choi Yun Sung2ORCID,Lim Jin Hyuk2ORCID,Seo Beum Geun2ORCID,Shim Joon Hyung12ORCID

Affiliation:

1. School of Automotive Convergence, Korea University, Seoul 02841, Republic of Korea

2. School of Mechanical Engineering, Korea University, Seoul 02841, Republic of Korea

Abstract

In this study, to enhance the stability of the cathode platinum (Pt) catalyst in polymer electrolyte membrane fuel cells, cerium oxide (CeOx) was deposited by plasma-enhanced atomic layer deposition (PEALD) process on the Pt catalyst sputtered on the cathode. A change in the peak power density loss after an accelerated stress test (AST) during I-V measurement of the membrane-electrode assembly according to the number of cycles was observed, which confirmed stability improvement. In polymer electrode membrane fuel cells (PEMFCs), free radicals lead to degradation of the performance and stability of catalysts; we used CeOx to prevent these problems. CeOx acts as a free radical scavenger through the redox reaction of Ce3+/4+ ions in the cell test and prevents oxidative hydroxyl and hydroperoxyl radical attack created in the reaction between hydrogen peroxide and released cations. By preventing oxidation, the stability was improved without decreasing the performance. Therefore, the improvement of stability through plasma-enhanced atomic layer deposition CeOx encapsulation can be considered a promising strategy for PEMFC catalysts.

Funder

Ministry of Trade, Industry and Energy

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3