Baicalein Accelerates Tendon-Bone Healing via Activation of Wnt/β-Catenin Signaling Pathway in Rats

Author:

Tian Xinggui12,Jiang Huaji3,Chen Yuhui1,Ao Xiang1,Chen Chuan4,Zhang Wentao5,He Feilin5,Liao Xiaoqing5,Jiang Xiaocheng5,Li Tao1ORCID,Zhang Zhongmin1ORCID,Zhang Xintao5ORCID

Affiliation:

1. Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China

2. Department of Spine Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China

3. Department of Pain, Yue Bei People’s Hospital, Shaoguan, Guangdong 512000, China

4. Department of Orthopedics, The First People’s Hospital of Guangyuan, Guangyuan, Sichuan 628017, China

5. Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen 518000, China

Abstract

Background. Tendon-bone healing is a reconstructive procedure which requires a tendon graft healing to a bone tunnel or to the surface of bone after the junction injury between tendon, ligament, and bone. The surgical reattachment of tendon to bone often fails due to regeneration failure of the specialized tendon-bone junction. Materials and Methods. An extra-articular tendon-bone healing rat model was established to discuss the effect of the baicalein 10 mg/(kg·d) in accelerating tendon-bone healing progress. Also, tendon-derived stem cells (TDSCs) were treated with various concentrations of baicalein or dickkopf-1 (DKK-1) to stimulate differentiation for 14 days. Results. In vivo, tendon-bone healing strength of experiment group was obviously stronger than the control group in 3 weeks as well as in 6 weeks. And there were more mature fibroblasts, more Sharpey fibers, and larger new bone formation area treated intragastrically with baicalein compared with rats that were treated with vehicle for 3 weeks and 6 weeks. In vitro, after induction for 14 days, the expressions of osteoblast differentiation markers, that is, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), osterix (OSX), and collagen I, were upregulated and Wnt/β-catenin signaling pathway was enhanced in TDSCs. The effect of DKK-1 significantly reduced the effect of baicalein on the osteogenic differentiation. Conclusion. These data suggest that baicalein may stimulate TDSCs osteogenic differentiation via activation of Wnt/β-catenin signaling pathway to accelerate tendon-bone healing.

Funder

State Administration of Traditional Chinese Medicine of the People’s Republic of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3