Dulaglutide Protects Mice against Diabetic Sarcopenia-Mediated Muscle Injury by Inhibiting Inflammation and Regulating the Differentiation of Myoblasts

Author:

Deng Fengyi12,Wu Wenyan12,Fan Xingyu12,Zhong Xing12,Wang Nuojin12,Wang Yue12ORCID,Pan Tianrong12ORCID,Du Yijun12ORCID

Affiliation:

1. Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China

2. Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230061, China

Abstract

Background. Type 2 diabetes mellitus increases the risk of sarcopenia, which is characterized by decreased muscle mass, strength, and function. However, there are no effective drugs to treat diabetic sarcopenia, and its underlying mechanism remains unknown. Here, we aimed to determine whether the GLP-1 receptor agonist (GLP-1RA) dulaglutide (Dul) affects the progression of diabetic sarcopenia. Methods. db/db mice were injected intraperitoneally with 0.6 mg/kg dulaglutide for 10 weeks. Mouse muscle tissues were then pathologically evaluated and stained with F4/80 or MPO to detect macrophages and neutrophils, respectively. In addition, inflammatory factors and FNDC5 in the muscle tissues were detected using qRT-PCR. Moreover, C2C12 cells were induced to enable their differentiation into skeletal muscle cells, and muscle factor levels were then detected. Furthermore, changes in muscle factor levels were detected at various glucose concentrations (11 mM, 22 mM, and 44 mM). Results. In vivo, dulaglutide alleviated muscle tissue injury; reduced levels of the inflammatory factors, IL-1β, IL-6, CCL2, and CXCL1; and reversed the level of FNDC5 in the muscle tissues of db/db mice. In vitro, a C2C12 cell differentiation model was established through the observation of cell morphology and determination of myokine levels. Upon stimulation with high glucose, the differentiation of C2C12 cells was inhibited. Dulaglutide improved this inhibitory state by upregulating the levels of both FNDC5 mRNA and protein. Conclusions. Treatment with the GLP-1RA dulaglutide protects db/db mice against skeletal muscle injury by inhibiting inflammation and regulating the differentiation of myoblasts. High glucose inhibited the differentiation of C2C12 cells and decreased the mRNA and protein levels of myokines. Dulaglutide could reverse the differentiation state induced in C2C12 cells by high glucose.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3