Actin Alpha 2 Downregulation Inhibits Neural Stem Cell Proliferation and Differentiation into Neurons through Canonical Wnt/β-Catenin Signaling Pathway

Author:

Zhang Ji1ORCID,Hu Quan1,Jiang Xuheng1,Wang Shuhong1,Zhou Xin1,Lu Yuanlan1,Huang Xiaofei1,Duan Haizhen1,Zhang Tianxi1ORCID,Ge Hongfei1ORCID,Yu Anyong1ORCID

Affiliation:

1. Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China

Abstract

Our previous study has shown that actin alpha 2 (ACTA2) is expressed in NSC and ACTA2 downregulation inhibits NSC migration by increasing RhoA expression and decreasing the expression of Rac1 to curb actin filament polymerization. Given that proliferation and differentiation are the two main characteristics of NSC, the role of ACTA2 downregulation in the proliferation and differentiation of NSC remains elusive. Here, the results demonstrated that ACTA2 downregulation using ACTA2 siRNA held the potential of inhibiting NSC proliferation using cell counting kit-8 (CCK8) and immunostaining. Then, our data illustrated that ACTA2 downregulation attenuated NSC differentiation into neurons, while directing NSC into astrocytes and oligodendrocytes using immunostaining and immunoblotting. Thereafter, the results revealed that the canonical Wnt/β-catenin pathway was involved in the effect of ACTA2 downregulation on the proliferation and differentiation of NSC through upregulating p-β-catenin and decreasing β-catenin due to inactivating GSK-3β, while this effect could be partially abolished with administration of CHIR99012, a GSK-3 inhibitor. Collectively, these results indicate that ACTA2 downregulation inhibits NSC proliferation and differentiation into neurons through inactivation of the canonical Wnt/β-catenin pathway. The aim of the present study is to elucidate the role of ACTA2 in proliferation and differentiation of NSC and to provide an intervention target for promoting NSC proliferation and properly directing NSC differentiation.

Funder

Science and Technology Project of Guizhou Province

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3