Elucidation of Potential Targets of San-Miao-San in the Treatment of Osteoarthritis Based on Network Pharmacology and Molecular Docking Analysis

Author:

Chu Man12,Gao Ting3ORCID,Zhang Xu1,Kang Wulin2,Feng Yu4ORCID,Cai Zhe56ORCID,Wu Ping5ORCID

Affiliation:

1. Faulty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China

2. The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China

3. Department of Pharmaceutics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China

4. Department of Sports Medicine and Arthroscopy, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China

5. Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou, China

6. Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong

Abstract

Background. To examine the potential therapeutic targets of Chinese medicine formula San-Miao-San (SMS) in the treatment of osteoarthritis (OA), we analyzed the active compounds of SMS and key targets of OA and investigated the interacting pathways using network pharmacological approaches and molecular docking analysis. Methods. The active compounds of SMS and OA-related targets were searched and screened by TCMSP, DrugBank, Genecards, OMIM, DisGeNet, TTD, and PharmGKB databases. Venn analysis and PPI were performed for evaluating the interaction of the targets. The topological analysis and molecular docking were used to confirm the subnetworks and binding affinity between active compounds and key targets, respectively. The GO and KEGG functional enrichment analysis for all targets of each subnetwork were conducted. Results. A total of 57 active compounds and 203 targets of SMS were identified by the TCMSP and DrugBank database, while 1791 OA-related targets were collected from the Genecards, OMIM, DisGeNet, TTD, and PharmGKB databases. By Venn analysis, 108 intersection targets between SMS targets and OA targets were obtained. Most of these intersecting targets involve quercetin, kaempferol, and wogonin. Moreover, intersecting targets identified by PPI analysis were introduced into Cytoscape plug-in CytoNCA for topological analysis. Hence, nine key targets of SMS for OA treatment were obtained. Furthermore, the potential binding conformations between active compounds and key targets were found through molecular docking analysis. According to the DAVID enrichment analysis, the main biological processes of SMS in the treatment of OA include oxidative stress, response to reactive oxygen species, and apoptotic signaling pathways. Finally, we found wogonin, the key compound in SMS, might play a pivotal role on Toll-like receptor, IL-17, TNF, osteoclast differentiation, and apoptosis signaling pathways through interacting with four key targets. Conclusions. Therefore, this study elucidated the potential active compounds and key targets of SMS in the treatment of OA based on network pharmacology.

Funder

Educational Commission of Shaanxi Province of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3