Kinematic Parameters for Tracking Patient Progress during Upper Limb Robot-Assisted Rehabilitation: An Observational Study on Subacute Stroke Subjects

Author:

Goffredo Michela1ORCID,Mazzoleni Stefano23ORCID,Gison Annalisa1,Infarinato Francesco1ORCID,Pournajaf Sanaz1,Galafate Daniele1,Agosti Maurizio4,Posteraro Federico5ORCID,Franceschini Marco16

Affiliation:

1. Department of Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy

2. The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy

3. Rehabilitation Bioengineering Laboratory, Volterra, Italy

4. Rehabilitation Medicine Service, NHS-University Hospital of Parma, Parma, Italy

5. Rehabilitation Department, Versilia Hospital, AUSL Tuscany North West, Camaiore, Italy

6. San Raffaele University, Rome, Italy

Abstract

Background. Upper limb robot-assisted therapy (RT) provides intensive, repetitive, and task-specific treatment, and its efficacy for stroke survivors is well established in literature. Biomechanical data from robotic devices has been widely employed for patient’s assessment, but rarely it has been analysed for tracking patient progress during RT. The goal of this retrospective study is to analyse built-in kinematic data registered by a planar end-effector robot for assessing the time course of motor recovery and patient’s workspace exploration skills. A comparison of subjects having mild and severe motor impairment has been also conducted. For that purpose, kinematic data recorded by a planar end-effector robot have been processed for investigating how motor performance in executing point-to-point trajectories with different directions changes during RT.Methods. Observational retrospective study of 68 subacute stroke patients who conducted 20 daily sessions of upper limb RT with the InMotion 2.0 (Bionik Laboratories, USA): planar point-to-point reaching tasks with an “assist as needed” strategy. The following kinematic parameters (KPs) were computed for each subject and for each point-to-point trajectory executed during RT: movement accuracy, movement speed, number of peak speed, and task completion time. The Wilcoxon signed-rank tests were used with clinical outcomes. the Friedman test and post hoc Conover’s test (Bonferroni’s correction) were applied to KPs. A secondary data analysis has been conducted by comparing patients having different severities of motor impairment. The level of significance was set atpvalue < 0.05.Results. At the RT onset, the movements were less accurate and smoothed, and showed higher times of execution than those executed at the end of treatment. The analysis of the time course of KPs highlighted that RT seems to improve the motor function mainly in the first sessions of treatment: most KPs show significant intersession differences during the first 5/10 sessions. Afterwards, no further significant variations occurred. The ability to perform movements away from the body and from the hemiparetic side remains more challenging. The results obtained from the data stratification show significant differences between subjects with mild and severe motor impairment.Conclusion. Significant improvements in motor performance were registered during the time course of upper limb RT in subacute stroke patients. The outcomes depend on movement direction and motor impairment and pave the way to optimize healthcare resources and to design patient-tailored rehabilitative protocols.

Funder

Ministry of Health

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3