Coadministration of Stigmasterol and Dexamethasone (STIG+DEX) Modulates Steroid-Resistant Asthma

Author:

Hohoayi Abigail1ORCID,Antwi Aaron O.2ORCID,Amoah Veronica2ORCID,Osafo Newman2ORCID,Sampene Paul P. O.3ORCID,Ainooson George2ORCID

Affiliation:

1. Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences (UHAS), Ho, Ghana

2. Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana

3. Department of Pathology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana

Abstract

Airway inflammation in asthma is managed with anti-inflammatory steroids such as dexamethasone (DEX). However, about 20% of asthmatics do not respond to this therapy and are classified as steroid-resistant. Currently, no effective therapy is available for steroid-resistant asthma. This work therefore evaluated the effect of a plant sterol, stigmasterol (STIG), and stigmasterol-dexamethasone combination (STIG+DEX) in LPS-ovalbumin-induced steroid-resistant asthma in Guinea pigs. To do this, the effect of drugs on inflammatory features such as airway hyperreactivity and histopathology of lung tissue was evaluated. Additionally, the possible pathway of drug action was assessed by measuring events such neutrophil levels, oxidative and nitrative stress, and histone deacetylase 2 (HDAC2) and interleukin 17 (IL-17) levels. STIG alone did not affect inflammatory features, although it caused some changes in the molecular events associated with steroid-resistant asthma. However, STIG+DEX caused significant modulation of inflammatory features by protecting against destruction of lung tissue. The modulation of inflammatory features was associated with significant inhibition of neutrophilia and oxidative and nitrative stress, decrease in HDAC2, and increase in IL-17 levels that are usually associated with steroid-resistant asthma. Our findings show that although STIG and DEX individually do not protect against steroid-resistant asthma, their coadministration results in significant modulation of inflammatory features and the associated molecular events that lead to steroid-resistant asthma.

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3