Integrated Bioinformatics-Based Identification of Potential Diagnostic Biomarkers Associated with Diabetic Foot Ulcer Development

Author:

Qian Long1,Xia Zhipeng2,Zhang Ming1,Han Qiong1,Hu Die1,Qi Sha1,Xing Danmou1,Chen Yan1,Zhao Xin1ORCID

Affiliation:

1. Department of Hand Surgery, Wuhan Fourth Hospital; Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China

2. Department of Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China

Abstract

The present study was designed to detect possible biomarkers associated with diabetic foot ulcer (DFU) incidence in an effort to develop novel treatments for this condition. The GSE7014 and GSE29221 gene expression datasets were downloaded from the Gene Expression Omnibus (GEO) database, after which differentially expressed genes (DEGs) were identified between DFU and healthy samples. These DEGs were then arranged into a protein-protein interaction (PPI) network, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) term enrichment analyses were performed to explore the functional roles of these genes. In total, 1192 DEGs were identified in the GSE7014 dataset (900 upregulated, 292 downregulated), while 1177 were identified in the GSE29221 dataset (257 upregulated, 919 downregulated). GO analyses revealed these DEGs to be significantly enriched in biological processes including sarcomere organization, muscle filament sliding, and the regulation of cardiac conduction, molecular functions including structural constituent of muscle, protein binding, and calcium ion binding, and cellular components including Z disc, myosin filament, and M band. These DEGs were also enriched in the adrenergic signaling in cardiomyoctes, dilated cardiomyopathy, and tight junction KEGG pathways. Together, the findings of these bioinformatics analyses thus identified key hub genes associated with DFU development.

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3