Automated Detection Model in Classification of B-Lymphoblast Cells from Normal B-Lymphoid Precursors in Blood Smear Microscopic Images Based on the Majority Voting Technique

Author:

Ghaderzadeh Mustafa1ORCID,Hosseini Azamossadat1ORCID,Asadi Farkhondeh1ORCID,Abolghasemi Hassan2ORCID,Bashash Davood3ORCID,Roshanpoor Arash4ORCID

Affiliation:

1. Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2. Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3. Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4. Department of Computer Science, Sama Technical and Vocational Training College, Tehran Branch (Tehran), Islamic Azad University (IAU), Tehran, Iran

Abstract

Introduction. Acute lymphoblastic leukemia (ALL) is the most common type of leukemia, a deadly white blood cell disease that impacts the human bone marrow. ALL detection in its early stages has always been riddled with complexity and difficulty. Peripheral blood smear (PBS) examination, a common method applied at the outset of ALL diagnosis, is a time-consuming and tedious process that largely depends on the specialist’s experience. Materials and Methods. Herein, a fast, efficient, and comprehensive model based on deep learning (DL) was proposed by implementing eight well-known convolutional neural network (CNN) models for feature extraction on all images and classification of B-ALL lymphoblast and normal cells. After evaluating their performance, four best-performing CNN models were selected to compose an ensemble classifier by combining each classifier’s pretrained model capabilities. Results. Due to the close similarity of the nuclei of cancerous and normal cells, CNN models alone had low sensitivity and poor performance in diagnosing these two classes. The proposed model based on the majority voting technique was adopted to combine the CNN models. The resulting model achieved a sensitivity of 99.4, specificity of 96.7, AUC of 98.3, and accuracy of 98.5. Conclusion. In classifying cancerous blood cells from normal cells, the proposed method can achieve high accuracy without the operator’s intervention in cell feature determination. It can thus be recommended as an extraordinary tool for the analysis of blood samples in digital laboratory equipment to assist laboratory specialists.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3