A Novel OsteomiRs Expression Signature for Osteoblast Differentiation of Human Amniotic Membrane-Derived Mesenchymal Stem Cells

Author:

Avendaño-Félix Mariana1,Fuentes-Mera Lizeth2ORCID,Ramos-Payan Rosalío1ORCID,Aguilar-Medina Maribel1ORCID,Pérez-Silos Vanessa2ORCID,Moncada-Saucedo Nidia2,Marchat Laurence A.3ORCID,González-Barrios Juan Antonio4,Ruiz-García Erika5ORCID,Astudillo-de la Vega Horacio6,Cruz-Colin José L.7,López-Camarillo César8ORCID

Affiliation:

1. Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, Mexico

2. Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico

3. Programa en Biomedicina Molecular y Red de Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México, Mexico

4. Laboratorio de Medicina Genómica, Hospital Regional 1 de Octubre ISSSTE, Ciudad de México, Mexico

5. Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, Ciudad de México, Mexico

6. Laboratorio de Investigación Traslacional en Cáncer y Terapia Celular, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Ciudad de México, Mexico

7. Subdirección de Investigación Básica, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico

8. Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, Mexico

Abstract

Human amniotic membrane-derived mesenchymal stem cells (hAM-MSCs) are a potential source of cells for therapeutic applications in bone regeneration. Recent evidence reveals a role for microRNAs (miRNAs) in the fine-tuning regulation of osteogenesis (osteomiRs) suggesting that they can be potential targets for skeleton diseases treatment. However, the functions of osteomiRs during differentiation of hAM-MSCs to osteogenic lineage are poorly understood. In this investigation, we discovered a novel miRNAs expression signature corresponding to the matrix maturation (preosteoblast) and mineralization (mature osteoblast) stages of dexamethasone-induced osteoblastic differentiation of hAM-MSCs. Comprehensive miRNAs profiling using TaqMan Low Density Arrays showed that 18 miRNAs were significantly downregulated, whereas 3 were upregulated in the matrix maturation stage (7 days after osteogenic induction) in comparison to undifferentiated cells used as control. Likewise, 47 miRNAs were suppressed and 25 were overexpressed at mineralization stage (14 days after osteogenic induction) in comparison to osteoprogenitors cells. Five out 93 miRNAs (miR-19b-3p, miR-335-3p, miR-197-3p, miR-34b-39, and miR-576-3p) were regulated at both 7 and 14 days suggesting a role in coordinated guidance of osteoblastic differentiation. Exhaustive bioinformatic predictions showed that the set of modulated miRNAs may target multiple genes involved in regulatory networks driving osteogenesis including key members of BMP, TGF-β, and WNT/β-catenin signaling pathways. Of these miRNAs, we selected miR-204, a noncoding small RNA that was expressed at matrix maturation phase and downregulated at maturation stage, for further functional studies. Interestingly, gain-of-function analysis showed that restoration of miR-204 using RNA mimics at the onset of mineralization stage dramatically inhibited deposition of calcium and osteogenic maturation of hAM-MSCs. Moreover in silico analysis detected a conserved miR-204 binding site at the 3′UTR of TGF-βR2 receptor gene. Using luciferase assays we confirmed that TGF-βR2 is a downstream effector of miR-204. In conclusion, we have identified a miRNAs signature for osteoblast differentiation of hAM-MSCs. The results from this study suggested that these miRNAs may act as potential inhibitors or activators of osteogenesis. Our findings also points towards the idea that miR-204/TGF-βR2 axis has a regulatory role in differentiation of hAM-MSCs committed to osteoblastic lineage.

Funder

Consejo Nacional de Ciencia y Tecnología CONACYT

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3