Intramelanocytic Acidification Plays a Role in the Antimelanogenic and Antioxidative Properties of Vitamin C and Its Derivatives

Author:

Miao Fang1ORCID,Su Meng-Yun1,Jiang Shan1,Luo Long-Fei1,Shi Ying1ORCID,Lei Tie-Chi1ORCID

Affiliation:

1. Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Abstract

Although vitamin C (VC, L-ascorbic acid) has been widely used as a skin lightening agent for a long time, the mechanism by which it inhibits melanogenesis remains poorly understood. It is well-documented that the intramelanocytic pH is an important factor in regulating tyrosinase function and melanosome maturation. The activity of tyrosinase, the rate-limiting enzyme required for melanin synthesis, is generally minimal in an acidic environment. Given that VC is an acidic compound, we might speculate that the intracellular acidification of melanocytes induced by VC likely reduces melanin content through the suppression of tyrosinase activity. The results of this study reveal that treatment of melanocytes with VC or its derivatives, magnesium ascorbyl phosphate (MAP) and 3-O-ethyl-L-ascorbic acid (AAE), resulted in significant decreases in the tyrosinase activity and melanin content and in the levels of intracellular reactive oxygen species (ROS), indicating that VC and its derivatives possess antimelanogenic and antioxidative activities. Western blotting analysis indicated that VC, MAP, and AAE exert their antimelanogenic activity by inhibiting the tyrosinase activity rather than by downregulating the expression of melanogenic proteins such as tyrosinase, premelanosome protein 17 (Pmel17) and microphthalmia-associated transcription factor (MITF). Further, we found that the reduced tyrosinase activity of melanocytes treated with VC or its derivatives could be reactivated following intracellular neutralization induced by ammonium chloride (NH4Cl) or concanamycin A (Con A). Finally, we examined the expression of sodium-dependent VC transporter-2 (SVCT-2) using western blotting and qPCR, which revealed that there was a significant increase in the expression of SVCT-2 in melanocytes following treatment with VC. VC-mediated intracellular acidification was neutralized by phloretin (a putative SVCT-2 inhibitor) in a dose-dependent manner. Taken together, these data show that VC and its derivatives suppress tyrosinase activity through cytoplasmic acidification that potentially results from enhanced VC transmembrane transport via the VC transporter SVCT-2.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3