Studies of the Anti-amnesic Effects and Mechanisms of Single and Combined Use of Donepezil and Ginkgo Ketoester Tablet on Scopolamine-Induced Memory Impairment in Mice

Author:

Zhang Jing1,Wang Jun1,Zhou Gui-Sheng1ORCID,Tan Ya-Jie1,Tao Hui-Juan1,Chen Jia-Qian1,Pu Zong-Jin1,Ma Jia-Yan1,She Wen1,Kang An1,Zhu Yue1,Liu Pei1,Zhu Zhen-Hua1,Shi Xu-Qin1,Tang Yu-Ping12ORCID,Duan Jin-Ao1

Affiliation:

1. Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China

2. Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, China

Abstract

Ginkgo ketoester tablets (GT) and donepezil were a clinically used combination for the treatment of Alzheimer’s disease (AD). The aim of the study was undertaken to investigate the antiamnesic effects of the two drugs alone and in combination through in vivo models of the Morris water maze along with in vitro antioxidants, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The potential mechanisms were speculated by the activities of acetylcholine (ACh), AChE, superoxide dismutase (SOD), and malondialdehyde (MDA) and the protein expression of brain-derived neurotrophic factor (BDNF) and tyrosine protein kinase B (TrkB). The combination group showed a concentration-dependent inhibition of cholinesterase and antioxidation. As far as its mechanism was concerned, the combination of two drugs exerted excellent effects on oxidative stress, cholinergic pathway damage, and inactivation of the BDNF-TrkB signaling pathway. Additionally, to elucidate the binding mechanism of GT active ingredients into the structure of AChE, the results of molecular docking studies indicated that hydrogen and/or hydrophobic bonds might play an important role in their binding process. Thus, the combination of drugs could treat AD perfectly and further verify the scientific rationality of clinical medication.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3