Performance Examination of Nonlinear Signal-Based Control in Shake Table Experiments with Sliding Structures

Author:

Enokida Ryuta1ORCID,Ikago Kohju1ORCID,Guo Jia2ORCID,Kajiwara Koichi3

Affiliation:

1. International Research Institute of Disaster Science, Tohoku University, Sendai 980-0845, Japan

2. Department of Agricultural and Environmental Engineering, Kyoto University, Kyoto 606-8502, Japan

3. E-Defense, National Research Institute for Earth Science and Disaster Resilience, Nishikameya 1501-21, Mitsuda, Shijimi-cho Miki 673-0515, Hyogo, Japan

Abstract

This study examines nonlinear signal-based control (NSBC) in shake table experiments with sliding structures, which have an isolation effect during an earthquake. NSBC uses a nonlinear signal obtained from the outputs of a controlled system and its linear model under the same input. Owing to the presence of the linear model, NSBC controllers are described by transfer functions, even for controlling nonlinear systems. NSBC achieved excellent control of the shake table in experiments with a specimen having nonlinear characteristics such as yielding of structural components. A sliding structure placed on a shake table significantly jeopardises its control because the nonlinear severity of sliding is greater than yielding, and its compensation has not yet been fully developed. Therefore, this study introduces NSBC into shake table experiments with sliding structures along with its linear model design to enhance their robustness, utilising the analysis stability to evaluate the design. Numerical simulations with a shake table with a sliding structure with a friction coefficient of 0.22 demonstrate the excellent performance of NSBC in table acceleration control. However, inversion-based control (IBC), a basic compensation approach, shows its ineffectiveness. In actual shake table experiments with a sliding structure with a friction coefficient of 0.2, NSBC with a reasonable linear model achieved excellent table acceleration control with almost 100% accuracy, whereas IBC was ineffective. This study clarifies that NSBC can solve the problem of control degradation caused by a sliding structure placed on the table.

Funder

Japan Society for the Promotion of Science

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3