Prediction of Drifter Trajectory Using Evolutionary Computation

Author:

Nam Yong-Wook1,Kim Yong-Hyuk1ORCID

Affiliation:

1. Department of Computer Science, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea

Abstract

We used evolutionary computation to predict the trajectory of surface drifters. The data used to create the predictive model comprise the hourly position of the drifters, the flow and wind velocity at the location, and the location predicted by the MOHID model. In contrast to existing numerical models that use the Lagrangian method, we used an optimization algorithm to predict the trajectory. As the evaluation measure, a method that gives a better score as the Mean Absolute Error (MAE) when the difference between the predicted position in time and the actual position is lower and the Normalized Cumulative Lagrangian Separation (NCLS), which is widely used as a trajectory evaluation method of drifters, were used. The evolutionary methods Differential Evolution (DE), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and ensembles of the above were used, with the DE&PSO ensemble found to be the best prediction model. Considering our objective to find a parameter that minimizes the fitness function to identify the average of the difference between the predictive change and the actual change, this model yielded better results than the existing numerical model in three of the four cases used for the test data, at an average of 19.36% for MAE and 5.96% for NCLS. Thus, the model using the fitness function set in this study showed improved results in NCLS and thus shows that NCLS can be used sufficiently in the evaluation system.

Funder

Korea Coast Guard

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3