Decode Brain System: A Dynamic Adaptive Convolutional Quorum Voting Approach for Variable-Length EEG Data

Author:

Xu Tao1,Zhou Yun2ORCID,Hou Zekai1,Zhang Wenlan2

Affiliation:

1. School of Software, Northwestern Polytechnical University, Xi’an 710072, China

2. School of Education, Shaanxi Normal University, Xi’an 710062, China

Abstract

The brain is a complex and dynamic system, consisting of interacting sets and the temporal evolution of these sets. Electroencephalogram (EEG) recordings of brain activity play a vital role to decode the cognitive process of human beings in learning research and application areas. In the real world, people react to stimuli differently, and the duration of brain activities varies between individuals. Therefore, the length of EEG recordings in trials gathered in the experiment is variable. However, current approaches either fix the length of EEG recordings in each trial which would lose information hidden in the data or use the sliding window which would consume large computation on overlapped parts of slices. In this paper, we propose TOO (Traverse Only Once), a new approach for processing variable-length EEG trial data. TOO is a convolutional quorum voting approach that breaks the fixed structure of the model through convolutional implementation of sliding windows and the replacement of the fully connected layer by the 1 × 1 convolutional layer. Each output cell generated from 1 × 1 convolutional layer corresponds to each slice created by a sliding time window, which reflects changes in cognitive states. Then, TOO employs quorum voting on output cells and determines the cognitive state representing the entire single trial. Our approach provides an adaptive model for trials of different lengths with traversing EEG data of each trial only once to recognize cognitive states. We design and implement a cognitive experiment and obtain EEG data. Using the data collecting from this experiment, we conducted an evaluation to compare TOO with a state-of-art sliding window end-to-end approach. The results show that TOO yields a good accuracy (83.58%) at the trial level with a much lower computation (11.16%). It also has the potential to be used in variable signal processing in other application areas.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3