Affiliation:
1. School of Software, Northwestern Polytechnical University, Xi’an 710072, China
2. School of Education, Shaanxi Normal University, Xi’an 710062, China
Abstract
The brain is a complex and dynamic system, consisting of interacting sets and the temporal evolution of these sets. Electroencephalogram (EEG) recordings of brain activity play a vital role to decode the cognitive process of human beings in learning research and application areas. In the real world, people react to stimuli differently, and the duration of brain activities varies between individuals. Therefore, the length of EEG recordings in trials gathered in the experiment is variable. However, current approaches either fix the length of EEG recordings in each trial which would lose information hidden in the data or use the sliding window which would consume large computation on overlapped parts of slices. In this paper, we propose TOO (Traverse Only Once), a new approach for processing variable-length EEG trial data. TOO is a convolutional quorum voting approach that breaks the fixed structure of the model through convolutional implementation of sliding windows and the replacement of the fully connected layer by the 1 × 1 convolutional layer. Each output cell generated from 1 × 1 convolutional layer corresponds to each slice created by a sliding time window, which reflects changes in cognitive states. Then, TOO employs quorum voting on output cells and determines the cognitive state representing the entire single trial. Our approach provides an adaptive model for trials of different lengths with traversing EEG data of each trial only once to recognize cognitive states. We design and implement a cognitive experiment and obtain EEG data. Using the data collecting from this experiment, we conducted an evaluation to compare TOO with a state-of-art sliding window end-to-end approach. The results show that TOO yields a good accuracy (83.58%) at the trial level with a much lower computation (11.16%). It also has the potential to be used in variable signal processing in other application areas.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献