Pharmacokinetic Study and Tissue Distribution of Lorlatinib in Mouse Serum and Tissue Samples by Liquid Chromatography-Mass Spectrometry

Author:

Chen Wei1ORCID,Shi Yafei1,Qi Shuya1,Zhou Haiyan1,Li Chunyu1,Jin Dujia2,Li Guohui1ORCID

Affiliation:

1. Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China

2. Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

Abstract

In the present study, we developed and validated a rapid and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of lorlatinib in mouse serum and tissue samples, and such a method was successfully applied to investigate the pharmacokinetic study and tissue distribution of lorlatinib after oral administration. Samples were processed with methanol to precipitate protein and extract drugs, and Afatinib-d6 was used as the internal standard (IS). For LC-MS/MS analysis, compounds were separated on a C18 column by gradient elution (0.1% of formic acid and methanol) at 0.5 mL/min in the positive-ion mode with m/z 407.28 [M + H]+ for lorlatinib and m/z 492.10 [M + H]+ for IS. Good linearity was observed within the calibration ranges. Selectivity, accuracy (−6.42% to 8.84%), precision (1.69% to 10.98%), recoveries (91.4% to 115.0%), and matrix effect (84.2% to 110.6%) were all within the acceptable ranges. After oral administration, serum concentration of lorlatinib quickly achieved the maximal concentration (2,705.683 ± 539.779 μg/L) at 0.625 ± 0.231 h. The highest concentration was detected in the liver (3,153.93 ng/100 mg), followed by the stomach (2,159.92 ng/100 mg) and the kidney (548.83 ng/100 mg). In conclusion, a simple and rapid detection method was established and validated for determination of lorlatinib in blood and tissue samples of mouse. The pharmacokinetic study and tissue distribution of lorlatinib were successfully investigated using this method.

Funder

CAMS Innovation Fund for Medical Sciences

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3