Analysis Study of Available Alternatives for Mitigation of Aromatic Hydrocarbon Emissions from a Glycol Dehydration Unit

Author:

Shoaib Abeer M.1ORCID,Ahmed Tamer F.1,Gadallah Abdelrahman G.23,Bhran Ahmed A.2ORCID

Affiliation:

1. Petroleum Refining and Petrochemical Engineering Department, Faculty of Petroleum and Mining Engineering, Suez University, P.O. Box: 43221, Suez, Egypt

2. Chemical Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

3. Chemical Engineering Department, National Research Center, Cairo 11241, Egypt

Abstract

A natural gas (NG) dehydration unit based on glycol absorption is considered one of the most important gas processing units, aiming to decrease water content and consequently adjust its dew point. However, during this process, not only water is absorbed by the glycol solvent, but also some aromatic compounds, including benzene, toluene, ethylbenzene, and xylene (BTEX), in addition to volatile organic compounds (VOC), are absorbed. These compounds are released during glycol regeneration into the atmosphere, resulting in environmental pollution and consequent catastrophic mental and physical health problems. This study aims to minimize BTEX emissions while ensuring efficient dew point control. Various strategies have been adopted to control BTEX emissions, but the present work focuses on optimizing operating conditions and investigating the influence of operational variables on BTEX emissions, as well as NG water content. LINGO optimization software and HYSYS (version 11) are used to find the plant’s optimum conditions for minimizing BTEX emissions and satisfying efficient dew point control. Simulation results show that stripping gas, triethylene glycol (TEG) circulation rate, and inlet feed gas temperature significantly affect BTEX emissions. The proposed optimum operating conditions in this work resulted in a reduction in BTEX emissions by about 81% while satisfying the required NG dew point. Furthermore, two quadratic equations are developed based on regression analysis for efficient calculation of the BTEX emissions and water dew point at any operational variables.

Funder

Al-Imam Muhammad Ibn Saud Islamic University

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3