Monitoring Population Phenology of Asian Citrus Psyllid Using Deep Learning

Author:

Bibi Maria1ORCID,Hanif Muhammad Kashif1ORCID,Sarwar Muhammad Umer1ORCID,Khan Muhammad Irfan1ORCID,Khan Shouket Zaman2ORCID,Shikali Shivachi Casper3ORCID,Anees Asad45ORCID

Affiliation:

1. Department of Computer Science, Government College University, Faisalabad, 38000, Pakistan

2. Department of Entomology, University of Agriculture Faisalabad Sub-Campus Burewala, Vehari 61010, Pakistan

3. South Eastern Kenya University, Kitui, Kenya

4. Cardiovascular Engineering Inc, 1 Edgewater Drive, Norwood, MA 02062, USA

5. Department of Mathematics, Clausthal University of Technology, Erzstraße 1, D-38678 Clausthal-Zellerfeld, Germany

Abstract

Asian citrus psyllid, Diaphorina citri Kuwayama (Liviidae: Hemiptera) is a menacing and notorious pest of citrus plants. It vectors a phloem vessel-dwelling bacterium Candidatus Liberibacter asiaticus, which is a causative pathogen of the serious citrus disease known as Huanglongbing. Huanglongbing disease is a major bottleneck in the export of citrus fruits from Pakistan. It is being responsible for huge citrus economic losses globally. In the current study, several prediction models were developed based on regression algorithms of machine learning to monitor different phenological stages of Asian citrus psyllid to predict its population about different abiotic variables (average maximum temperature, average minimum temperature, average weekly temperature, average weekly relative humidity, and average weekly rainfall) and biotic variable (host plant phenological patterns) in citrus-growing regions of Pakistan. The pest prediction models can be used for proper applications of pesticides only when needed for reducing the environmental and cost impacts of pesticides. Pearson’s correlation analysis was performed to find the relationship between different predictor (abiotic and biotic) variables and pest infestation rate on citrus plants. Multiple linear regression, random forest regressor, and deep neural network approaches were compared to predict population dynamics of Asian citrus psyllid. In comparison with other regression techniques, a deep neural network-based prediction model resulted in the least root mean squared error values while predicting egg, nymph, and adult populations.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3