Knee Joint Biomechanics in Physiological Conditions and How Pathologies Can Affect It: A Systematic Review

Author:

Zhang Li1ORCID,Liu Geng1ORCID,Han Bing1ORCID,Wang Zhe1ORCID,Yan Yuzhou1ORCID,Ma Jianbing2ORCID,Wei Pingping3

Affiliation:

1. Shaanxi Engineering Laboratory for Transmissions and Controls, Northwestern Polytechnical University, Xi'an 710072, China

2. Hong-Hui hospital, Xi’an Jiaotong University College of Medicine, Xi'an 710054, China

3. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi'an 710054, China

Abstract

The knee joint, as the main lower limb motor joint, is the most vulnerable and susceptible joint. The knee injuries considerably impact the normal living ability and mental health of patients. Understanding the biomechanics of a normal and diseased knee joint is in urgent need for designing knee assistive devices and optimizing a rehabilitation exercise program. In this paper, we systematically searched electronic databases (from 2000 to November 2019) including ScienceDirect, Web of Science, PubMed, Google Scholar, and IEEE/IET Electronic Library for potentially relevant articles. After duplicates were removed and inclusion criteria applied to the titles, abstracts, and full text, 138 articles remained for review. The selected articles were divided into two groups to be analyzed. Firstly, the real movement of a normal knee joint and the normal knee biomechanics of four kinds of daily motions in the sagittal and coronal planes, which include normal walking, running, stair climbing, and sit-to-stand, were discussed and analyzed. Secondly, an overview of the current knowledge on the movement biomechanical effects of common knee musculoskeletal disorders and knee neurological disorders were provided. Finally, a discussion of the existing problems in the current studies and some recommendation for future research were presented. In general, this review reveals that there is no clear assessment about the biomechanics of normal and diseased knee joints at the current state of the art. The biomechanics properties could be significantly affected by knee musculoskeletal or neurological disorders. Deeper understanding of the biomechanics of the normal and diseased knee joint will still be an urgent need in the future.

Funder

111 Project

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3