The Effect of Limited Proteolysis by Trypsin on the Formation of Soy Protein Isolate Nanofibrils

Author:

An Di1,Li Liang1ORCID

Affiliation:

1. College of Food Science, Northeast Agricultural University, Harbin 150030, China

Abstract

Nanofibril system constructed by protein self-assembly is widely used in the food industry because of purposive functional properties. Soy protein isolate nanofibrils (SPINs) were reported to form via heating at pH 2.0. In this research, the soy protein isolate (SPI) hydrolysate prepared by trypsin was used as a raw material for the formation of nanofibrils called soy protein isolate hydrolysate nanofibrils (SPIHNs). Microscopic images demonstrated the formation of two nanofibrils. Based on circular dichroism spectroscopy and Thioflavin T (ThT) fluorescence spectral, we concluded that β-sheet played an important role in SPIN and SPIHN’s structural composition. At the same time, the α-helix in SPI had not been destroyed, thereby favoring the formation of SPIHN. The surface hydrophobicity of SPIHN continued to increase during the heating process and reached the highest value when heating 8 h. SDS-PAGE analysis showed that peptides produced by enzyme-modified SPI affected the formation of SPIHN. These results proposed that enzymatic hydrolysis prior to acidic during fibrillation process affected the fibrillation of SPI, and the peptides formed by enzymatic hydrolysis were more efficient for the self-assembly process. This study will provide a theoretical basis for the future research of SPI nanofibril functionality.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3