Bilirubin Oxidation End Products (BOXes) Induce Neuronal Oxidative Stress Involving the Nrf2 Pathway

Author:

Lu Yinzhong12ORCID,Zhang Wenyi1,Zhang Bing1,Heinemann Stefan H.3,Hoshi Toshinori4,Hou Shangwei12ORCID,Zhang Guangming1ORCID

Affiliation:

1. Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China

2. Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China

3. Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena & Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany

4. Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

Delayed ischemic neurological deficit (DIND) is a severe complication after subarachnoid hemorrhage (SAH). Previous studies have suggested that bilirubin oxidation end products (BOXes) are probably associated with the DIND after SAH, but there is a lack of direct evidence yet even on cellular levels. In the present study, we aim to explore the potential role of BOXes and the involved mechanisms in neuronal function. We synthesized high-purity (>97%) BOX A and BOX B isomers. The pharmacokinetics showed they are permeable to the blood-brain barrier. Exposure of a moderate concentration (10 or 30 μM) of BOX A or BOX B to isolated primary cortical neurons increased the production of reactive oxygen species. In the human neuroblastoma SH-SY5Y cells, BOX A and BOX B decreased the mitochondrial membrane potential and enhanced nuclear accumulation of the protein Nrf2 implicated in oxidative injury repair. In addition, both chemicals increased the mRNA and protein expression levels of multiple antioxidant response genes including Hmox1, Gsta3, Blvrb, Gclm, and Srxn1, indicating that the antioxidant response element (ARE) transcriptional cascade driven by Nrf2 is activated. In conclusion, we demonstrated that primary cortical neurons and neuroblastoma cells undergo an adaptive response against BOX A- and BOX B-mediated oxidative stress by activation of multiple antioxidant responses, in part through the Nrf2 pathway, which provides in-depth insights into the pathophysiological mechanism of DIND after SAH or other neurological dysfunctions related to cerebral hemorrhage.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3