Insampaedok-San Extract Exerts an Immune-Enhancing Effect through NF-κB p65 Pathway Activation

Author:

Huh Gyuwon12ORCID,Oh Youngse3ORCID,Jeon Youngsic1ORCID,Kang Ki Sung4ORCID,Kim Su Nam1ORCID,Jung Sang Hoon12,Kim Seung Hyun3ORCID,Kim Young-Joo1ORCID

Affiliation:

1. Natural Product Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea

2. Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea

3. College of Pharmacy, Yonsei Institute of Pharmaceutical Science, Yonsei University, Incheon 21983, Republic of Korea

4. College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea

Abstract

Insampaedok-san (IS) has traditionally been prescribed as a medication for cold-related symptoms in Northeast Asia, including Korea and China. In this study, we focused on elucidating the molecular mechanism underlying the immunomodulatory activity of IS water extract (ISE) in macrophages. ISE significantly enhanced the levels of nitric oxide (NO) and prostaglandin E2 (PGE2) by increasing the expression of inducible NO synthase and cyclooxygenase-2 (COX-2) in a dose-dependent manner. ISE, which consists of many herbs, contains a large number of active compounds whose pharmacological targets and mechanisms are complicated. Therefore, network pharmacology analysis was used to predict the potential key components, targets, and mechanisms of ISE as immunomodulators. Subsequently, the network pharmacology results were validated experimentally. Seven key components were identified through HPLC-QTOF-MS. As predicted by the network pharmacology analysis, ISE increased the mRNA expression of Tnf and Il6. Furthermore, ISE increased the phosphorylation, nuclear translocation, and transcriptional activity of the p65 subunit of the nuclear factor-κB (NF-κB) signaling pathway. In contrast, rapamycin, an NF-κB inhibitor, suppressed the ISE-induced mRNA expression of Tnf and Il6. In conclusion, ISE is an immune activator that can elevate the production of NO, PGE2, and proinflammatory cytokines mediated by NF-κB signaling.

Funder

Korea Institute of Science and Technology

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3