A Passive Wireless Smart Washer for Locking Force Monitoring on the Orthopedic Pedicle Screw

Author:

Liu Che-Fu1ORCID,Wong Tze-Hong2ORCID,Wang Hsin-Chuan1ORCID,Sun Asher1ORCID,Hsu Wensyang1ORCID

Affiliation:

1. Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

2. Department of Orthopedics, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan

Abstract

A pedicle screw is a component for fixation in spine fusion surgery, often for patients with osteoporosis. Spine fusion condition highly depends on whether the pedicle screw is tightly fixed on spine, if not, spine fusion will not work properly. After the surgery, the first 3 months is the most crucial period, and bone healing situation cannot be shown through X-ray before the first radiologic images taken around the sixth week. Therefore, it is helpful to have a nonradiative method to monitor the locking force of the pedicle screw after surgery, especially during the early stage. Here a passive wireless force sensor is developed for monitoring the locking force of the pedicle screw, as we call it a smart washer. By integrating a capacitive ring-shape force sensor with an inductor, a passive LC sensor can be built by measuring the resonant frequency wirelessly. The smart washer is designed and calibrated to establish the relation between the locking force and resonant frequency, and then it is fixed with a screw in a porcine femur, with and without medium between the reader and inductor. When the locking force decreases from 8.3 to 0.9 N, the error is less than 0.5 N, and the maximum wireless sensing distance is 72 mm. However, the medium between the reader and the sensor inductor will affect the resonant frequency, but not the sensitivity. Therefore, the locking force variation can still be calculated by the resonant frequency shift accurately. Furthermore, by designing another five LC sensors with different operating resonant frequency ranges, it is possible to identify locking forces at different locations for more pedicle screws. To our knowledge, no LC force sensor was proposed to monitor the locking force of pedicle screws after surgery in the past.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3