Design and Implementation of a Low-Energy-Consumption Air-Conditioning Control System for Smart Vehicle

Author:

Weng Chien-Lun1ORCID,Kau Lih-Jen1ORCID

Affiliation:

1. Department of Electronic Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Rd., Taipei 10608, Taiwan

Abstract

About 7% of people’s daily time is spent in taking vehicles between office and home. Besides, with the improvement of the living standard in today’s society, people’s requirements for a comfortable environment inside the car are constantly increasing and this must rely on an effective vehicle air conditioner to maintain the comfort of the cabin environment. In general, a vehicle air conditioner uses the air-mixing mode to regulate the temperature control system. In this mode of operation, the compressor needs to work continuously, which is extremely energy consuming. The vehicle’s air conditioner is greatly affected by the inner and outer heat load, which are generated therein. Furthermore, the heat load is instantly changeable. Therefore, only when the controller can adapt to the feature of heat load, then we can find the optimal control method, thus enabling the vehicle’s air conditioner to interact with the actual heat load to supply the balanced cooling capacity and, as a result, create the most comfortable environment inside the cabin with minimum energy consumption. For this purpose, we bring up in this paper a low-energy-consumption smart vehicle air-conditioning control system to detect total heat load, which can change the vehicle’s air-conditioning capacity mode to maintain the average temperature at 25.2°C∼26.2°C and the average humidity at 46.6%∼54.4% in the cabin. When the inner heat load is stable, the rest times of the compressor can reach 16∼23 times per hour, which attains a rate of fuel saving around 21%∼28%. With the proposed architecture, the purpose of the low-energy-consumption vehicle air-conditioning system can be achieved, which, at the same time, creates a comfortable environment inside the cabin.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3