Integrated Transformer Health Estimation Methodology Based on Markov Chains and Evidential Reasoning

Author:

Milosavljevic Srdjan1ORCID,Janjic Aleksandar2ORCID

Affiliation:

1. Electrotechnical Institute “Nikola Tesla”, Belgrade, Serbia

2. University of Nis, Faculty of Electronic Engineering, Nis, Serbia

Abstract

Due to the large number of power transformers (ETs) in the distribution system, there is a need for a relatively simple representation of the status of each unit in order to more easily determine where and how to allocate the budget for preventive and corrective maintenance. In recent years, the concept of the transformer health index (HI) as an integral part of resource management was adopted for the condition assessment and ranking of ETs. HI algorithms take different forms and can be determined based on a large number of specific parameters. However, the main problem in HI methodology or any modern diagnostic technique is the existence of regular measurements and inspections and accurate test results. The paper proposes a solution in the form of the upgraded HI and the novel methodology for ET ranking including the value of available information to describe ET current state. The confidence to the measurement results is calculated using evidential reasoning (ER) algorithm based on Dempster–Shafer theory. The contribution to the ER methodology is the calculation of the initial degrees of belief using Markov chains. The aging process of an ET and transition probabilities from state to state are modelled using the statistical data for the population of 300 ETs and 20 years monitoring data. The proposed methodology is tested on the real data for 110/35 kV transformer, and in the second case, compared to the sample of 30 110/x kV transformers with traditional HI calculation.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3