Study on the Mechanism of Action of Paclitaxel-Loaded Polylactic-co-glycolic Acid Nanoparticles in Non-Small-Cell Lung Carcinoma Cells

Author:

Zuo Yangsong1,Shen Wenyi1,Wang Lili1,Wang Chengshi2,Pu Juan2ORCID

Affiliation:

1. Department of Aspiration Medicine, Lianshui County People’s Hospital, Lianshui, Huaian 223400, Jiangsu, China

2. Department of Radiotherapy, Lianshui County People’s Hospital, Lianshui, Huaian 223400, Jiangsu, China

Abstract

Objective. To study effective carriers that can enhance the antitumor effect of paclitaxel (PTX). Methods. PTX-loaded polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) (PTX-PLGA NPs), constructed using the emulsification solvent evaporation method, were characterized by scanning electron microscopy and dynamic light scattering. Non-small-cell lung carcinoma (NSCLC) cells were divided into the dimethyl sulfoxide (DMSO) group, PLGA NPs group, PTX group, and PTX-PLGA NPs group. Cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell apoptosis was determined by flow cytometry, and cell migration and invasion were assessed using Transwell assay. Results. PTX-PLGA NPs were smooth in the surface and spherical in shape, with a particle size of 268 ± 1.3  nm. Both PTX and PTX-PLGA NPs could effectively inhibit the activity of A549 and H1650 cells. At 12 and 24 h, PTX-PLGA NPs presented weaker inhibition on the activity of NSCLC cells than PTX, but at 48 and 72 h, PTX-PLGA NPs presented stronger inhibition. Compared with PTX, PTX-PLGA NPs were more effective in enhancing apoptosis and inhibiting migration and invasion of NSCLC cells. Conclusion. With good sustained release and the ability to promote cellular uptake, PTX-PLGA NPs can strongly inhibit the malignant activities of NSCLC cells, which can be used as a promising drug carrier.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3