Microparticles That Form Immune Complexes as Modulatory Structures in Autoimmune Responses

Author:

Burbano Catalina12,Rojas Mauricio12,Vásquez Gloria1,Castaño Diana1

Affiliation:

1. Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia

2. Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia

Abstract

Microparticles (MPs) are induced during apoptosis, cell activation, and even “spontaneous” release. Initially MPs were considered to be inert cellular products with no biological function. However, an extensive research and functional characterization have shown that the molecular composition and the effects of MPs depend upon the cellular background and the mechanism inducing them. They possess a wide spectrum of biological effects on intercellular communication by transferring different molecules able to modulate other cells. MPs interact with their target cells through different mechanisms: membrane fusion, macropinocytosis, and receptor-mediated endocytosis. However, when MPs remain in the extracellular milieu, they undergo modifications such as citrullination, glycosylation, and partial proteolysis, among others, becoming a source of neoantigens. In rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), reports indicated elevated levels of MPs with different composition, content, and effects compared with those isolated from healthy individuals. MPs can also form immune complexes amplifying the proinflammatory response and tissue damage. Their early detection and characterization could facilitate an appropriate diagnosis optimizing the pharmacological strategies, in different diseases including cancer, infection, and autoimmunity. This review focuses on the current knowledge about MPs and their involvement in the immunopathogenesis of SLE and RA.

Funder

Colciencias

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3