Channel-Boosted and Transfer Learning Convolutional Neural Network-Based Osteoporosis Detection from CT Scan, Dual X-Ray, and X-Ray Images

Author:

Dhanagopal R.1ORCID,Menaka R.1ORCID,Suresh Kumar R.1ORCID,Vasanth Raj P. T.1ORCID,Debrah E. L.2ORCID,Pradeep K.3ORCID

Affiliation:

1. Centre for System Design, Chennai Institute of Technology, Chennai, Tamil Nadu, India

2. Biomedical Engineering Technology, Koforidua Technical University, Koforidua, Eastern Region, Ghana

3. Department of Biomedical Engineering, Chennai Institute of Technology, Chennai, Tamil Nadu, India

Abstract

Osteoporosis is a word used to describe a condition in which bone density has been diminished as a result of inadequate bone tissue development to counteract the elimination of old bone tissue. Osteoporosis diagnosis is made possible by the use of medical imaging technologies such as CT scans, dual X-ray, and X-ray images. In practice, there are various osteoporosis diagnostic methods that may be performed with a single imaging modality to aid in the diagnosis of the disease. The proposed study is to develop a framework, that is, to aid in the diagnosis of osteoporosis which agrees to all of these CT scans, X-ray, and dual X-ray imaging modalities. The framework will be implemented in the near future. The proposed work, CBTCNNOD, is the integration of 3 functional modules. The functional modules are a bilinear filter, grey-level zone length matrix, and CB-CNN. It is constructed in a manner that can provide crisp osteoporosis diagnostic reports based on the images that are fed into the system. All 3 modules work together to improve the performance of the proposed approach, CBTCNNOD, in terms of accuracy by 10.38%, 10.16%, 7.86%, and 14.32%; precision by 11.09%, 9.08%, 10.01%, and 16.51%; sensitivity by 9.77%, 10.74%, 6.20%, and 12.78%; and specificity by 11.01%, 9.52%, 9.5%, and 15.84%, while requiring less processing time of 33.52%, 17.79%, 23.34%, and 10.86%, when compared to the existing techniques of RCETA, BMCOFA, BACBCT, and XSFCV, respectively.

Funder

Centre for System Design, Chennai Institute of Technology

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3