Fabrication and Optimization Design of Multilayer Flyer Plates for Laser-Driven Loading

Author:

Guo Wei1ORCID,Cao Wei1ORCID,Wang Xiang1,Peng Qiqi2,Wu Lizhi3

Affiliation:

1. Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621999, China

2. Shaanxi Applied Physics-Chemistry Research Institute, Xi’an 710061, China

3. Department of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

The laser-driven flyer plate is an important loading technology in high energy physics, shock wave physics, and explosive initiation application. How to generate a high-velocity and intact flyer plate by using the laser is a matter of concern for laser driving. In this study, the multilayer flyer plates (MFPs) of Al/Al2O3/Al and TiO2/Al/Al2O3/Al with adjustable performance were designed and fabricated by magnetron sputtering and analyzed by scanning electron microscopy (SEM), laser reflectance spectrometer, and differential thermal analysis (DTA). The effects of the structure and material on the output performance of MFPs were analyzed by photon Doppler velocimetry (PDV) and ultrahigh-speed video. The morphology results showed that the structure of MFPs had uniform and clear boundaries between side-by-side layers. The MFP velocity was controlled in the range of 4.0–6.0 km/s by adjusting the film thickness, structure, and thermite material with 43.1 J/cm2 laser ablation. Among them, the energetic flyers with the thermite ablation layer had the highest final velocity of 5.38 km/s due to the prestored energy of TiO2/Al. By appropriately increasing the thickness of Al2O3 from 0.4 μm to 0.8 μm, the complete flight of the flyer plate to 3.72 mm can be realized. In addition, TiO2/Al thermite film had characteristics of reaction heat release and lower laser reflectivity (72.13%) than the Al layer (80.55%), which explained the velocity enhancement effect of energetic flyer plates. This work provides facile strategy to enhance the output performance of MFPs, which may facilitate the practical applications of laser driving technology.

Funder

Innovation and Development Foundation of CAEP

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3