The Protective Role of Hydrogen Sulfide and Its Impact on Gene Expression Profiling in Rat Model of COPD

Author:

He Yanjing12ORCID,Sun Yun1,Liao Chengcheng1,Lin Fan1,Xia Zhengyuan234ORCID,Qi Yongfen5ORCID,Chen Yahong1ORCID

Affiliation:

1. Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China

2. Department of Anesthesiology, The University of Hong Kong, Hong Kong, China

3. State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China

4. Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China

5. Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China

Abstract

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, which is usually caused by exposure to noxious particles or gases. Hydrogen sulfide (H2S), as an endogenous gasotransmitter, is involved in the pathogenesis of COPD, but its role in COPD is little known. To investigate the role of H2S in COPD, a rat model of COPD was established by cigarette smoking (CS) and intratracheal instillation of lipopolysaccharide (LPS). Rats were randomly divided into 4 groups: control, CS + LPS , CS + LPS + sodium hydrosulfide (NaHS, H2S donor), and CS + LPS + propargylglycine (PPG, inhibitor of cystathionine-γ-lyase, and CTH). Lung function in vivo, histology analysis of lung sections, malondialdehyde (MDA) concentration, CTH protein, total superoxide dismutase (T-SOD), and catalase (CAT) activity in lung tissues were assessed. Gene expression profiling of lung was assessed by microarray analysis. The results showed that rats in the CS + LPS group had lower body weight and lung function but higher lung pathological scores, MDA concentration, CTH protein, T-SOD, and CAT activity compared with the control. Compared with CS + LPS group, NaHS treatment decreased lung pathological scores and MDA concentration, while PPG treatment decreased body weight of rats and T-SOD activity, and no significant differences were detected in pathological scores by PPG treatment. Microarray analysis identified multiple differentially expressed genes, and some genes regulated by H2S were involved in oxidative stress, apoptosis, and inflammation pathways. It indicates that H2S may play a protective role in COPD via antioxidative stress and antiapoptosis pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3