Transcutaneous Electrical Nerve Stimulation (TENS) Alleviates Brain Ischemic Injury by Regulating Neuronal Oxidative Stress, Pyroptosis, and Mitophagy

Author:

Tan Zixuan1ORCID,Dong Fang2ORCID,Wu Linyu1ORCID,Feng Yashuo1ORCID,Zhang Min34ORCID,Zhang Feng14ORCID

Affiliation:

1. Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China

2. Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 05005, China

3. Department of Pathophysiology, Hebei Medical University, Shijiazhuang 050051, China

4. Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang 050051, China

Abstract

Background. As a noninvasive treatment, transcutaneous electrical nerve stimulation (TENS) has been utilized to treat various diseases in clinic. However, whether TENS can be an effective intervention in the acute stage of ischemic stroke still remains unclear. In the present study, we aimed to explore whether TENS could alleviate brain infarct volume, reduce oxidative stress and neuronal pyroptosis, and activate mitophagy following ischemic stroke. Methods. TENS was performed at 24 h after middle cerebral artery occlusion/reperfusion (MCAO/R) in rats for 3 consecutive days. Neurological scores, the volume of infarction, and the activity of SOD, MDA, GSH, and GSH-px were measured. Moreover, western blot was performed to detect the related protein expression, including Bcl-2, Bax, TXNIP, GSDMD, caspase-1, NLRP3, BRCC3, HIF-1α, BNIP3, LC3, and P62. Real-time PCR was performed to detect NLRP3 expression. Immunofluorescence was performed to detect the levels of LC3. Results. There was no significant difference of neurological deficit scores between the MCAO group and the TENS group at 2 h after MCAO/R operation ( P > 0.05 ), while the neurological deficit scores of TENS group significantly decreased in comparison with MCAO group at 72 h following MACO/R injury ( P < 0.05 ). Similarly, TENS treatment significantly reduced the brain infarct volume compared with the MCAO group ( P < 0.05 ). Moreover, TENS decreased the expression of Bax, TXNIP, GSDMD, caspase-1, BRCC3, NLRP3, and P62 and the activity of MDA as well as increasing the level of Bcl-2, HIF-1α, BNIP3, and LC3 and the activity of SOD, GSH, and GSH-px ( P < 0.05 ). Conclusions. In conclusion, our results indicated that TENS alleviated brain damage following ischemic stroke via inhibiting neuronal oxidative stress and pyroptosis and activating mitophagy, possibly via the regulation of TXNIP, BRCC3/NLRP3, and HIF-1α/BNIP3 pathways.

Funder

Natural Science Foundation of Hebei Province

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3