Acute-Phase Serum Amyloid A as a Marker of Insulin Resistance in Mice

Author:

Scheja Ludger12,Heese Barbara12,Zitzer Heike2,Michael Mervyn D.3,Siesky Angela M.3,Pospisil Heike4,Beisiegel Ulrike1,Seedorf Klaus12

Affiliation:

1. Department of Biochemistry and Molecular Biology II, University Medical Center, 20246 Hamburg, Germany

2. Former Lilly Research Laboratories, 22419 Hamburg, Germany

3. Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA

4. Center for Bioinformatics, University of Hamburg, 20146 Hamburg, Germany

Abstract

Acute-phase serum amyloid A (A-SAA) was shown recently to correlate with obesity and insulin resistance in humans. However, the mechanisms linking obesity-associated inflammation and elevated plasma A-SAA to insulin resistance are poorly understood. Using high-fat diet- (HFD-) fed mice, we found that plasma A-SAA was increased early upon HFD feeding and was tightly associated with systemic insulin resistance. Plasma A-SAA elevation was due to induction ofSaa1andSaa2expression in liver but not in adipose tissue. In adipose tissueSaa3was the predominant isoform and the earliest inflammatory marker induced, suggesting it is important for initiation of adipose tissue inflammation. To assess the potential impact of A-SAA on adipose tissue insulin resistance, we treated 3T3-L1 adipocytes with recombinant A-SAA. Intriguingly, physiological levels of A-SAA caused alterations in gene expression closely resembling those observed in HFD-fed mice. Proinflammatory genes (Ccl2, Saa3) were induced while genes critical for insulin sensitivity (Irs1, Adipoq, Glut4) were down-regulated. Our data identify HFD-fed mice as a suitable model to study A-SAA as a biomarker and a novel possible mediator of insulin resistance.

Publisher

Hindawi Limited

Subject

General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3