Internet of Things with Deep Learning-Based Face Recognition Approach for Authentication in Control Medical Systems

Author:

Hussain Tahir1ORCID,Hussain Dostdar2,Hussain Israr2,AlSalman Hussain3,Hussain Saddam4ORCID,Ullah Syed Sajid5,Al-Hadhrami Suheer6ORCID

Affiliation:

1. Department of Computer Science and Communication Engineering, National Cheng Kung University, 70101, Taiwan

2. Department of Computer Sciences, Karakoram International University, Gilgit 15100, Pakistan

3. Department of Computer Science, King Saud University, Riyadh 11543, Saudi Arabia

4. Department of Information Technology, Hazara University, Mansehra, Pakistan

5. Department of Information and Communication Technology, University of Agder, Norway

6. Computer Engineering Department, Engineering College, Hadhramout University, Hadhramaut, Yemen

Abstract

Internet of Things (IoT) with deep learning (DL) is drastically growing and plays a significant role in many applications, including medical and healthcare systems. It can help users in this field get an advantage in terms of enhanced touchless authentication, especially in spreading infectious diseases like coronavirus disease 2019 (COVID-19). Even though there is a number of available security systems, they suffer from one or more of issues, such as identity fraud, loss of keys and passwords, or spreading diseases through touch authentication tools. To overcome these issues, IoT-based intelligent control medical authentication systems using DL models are proposed to enhance the security factor of medical and healthcare places effectively. This work applies IoT with DL models to recognize human faces for authentication in smart control medical systems. We use Raspberry Pi (RPi) because it has low cost and acts as the main controller in this system. The installation of a smart control system using general-purpose input/output (GPIO) pins of RPi also enhanced the antitheft for smart locks, and the RPi is connected to smart doors. For user authentication, a camera module is used to capture the face image and compare them with database images for getting access. The proposed approach performs face detection using the Haar cascade techniques, while for face recognition, the system comprises the following steps. The first step is the facial feature extraction step, which is done using the pretrained CNN models (ResNet-50 and VGG-16) along with linear binary pattern histogram (LBPH) algorithm. The second step is the classification step which can be done using a support vector machine (SVM) classifier. Only classified face as genuine leads to unlock the door; otherwise, the door is locked, and the system sends a notification email to the home/medical place with detected face images and stores the detected person name and time information on the SQL database. The comparative study of this work shows that the approach achieved 99.56% accuracy compared with some different related methods.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3