Development of a Multivariable Risk Prediction Tool to Predict Adverse Outcomes among Children with Type 1 Diabetes: A Pilot Study

Author:

Lieu Fiona1ORCID,Martin Wrivu N.2ORCID,Birt Stewart13,Mattes Joerg24ORCID,McGee Richard G.15ORCID

Affiliation:

1. The Central Coast Clinical School, School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia

2. School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia

3. Department of Paediatrics, Gosford Hospital, Central Coast Local Health District, Gosford, New South Wales, Australia

4. Priority Research Centre GrowUpWell, Hunter Medical Research Institute, Newcastle, New South Wales, Australia

5. Department of Paediatrics, Campbelltown Hospital, South West Sydney Local Health District, Campbelltown, New South Wales, Australia

Abstract

Background. Children and adolescents with type 1 diabetes mellitus (T1DM) are frequently hospitalised for severe hypoglycaemia, hyperglycaemia, and diabetic ketoacidosis (DKA). While several risk factors have been recognised, clinically identifying these children at high risk of acute decompensation remains challenging. Objective. To develop a risk prediction model to accurately estimate the risk of acute healthcare utilisation due to severe hypoglycaemia, hyperglycaemia, and DKA in children and adolescents with T1DM. Materials and Methods. Using a retrospective dataset, baseline demographic and clinical data were collected from patients (<18 years) seen at a regional paediatric diabetes clinic from 1 January 2018 to 1 January 2020. The outcome was the number of emergency department presentations or hospital admissions for severe hypoglycaemia, hyperglycaemia, and DKA across the study period. Variables that were significant in univariate analysis were entered into a multivariable model. Receiver operator characteristic (ROC) curves assessed the model’s discrimination and generated cut-offs for risk group stratification (low, medium, and high). Kaplan–Meier survival analysis measured time to acute healthcare utilisation across the risk groups. Results. Our multivariable risk prediction model consisted of five predictors (continuous glucose monitoring device, previous acute healthcare utilisation, missed appointments, and child welfare services involvement and socioeconomic status). The model exhibited good discrimination (area under the ROC = 0.81), accurately stratified children into low-, medium-, and high-risk groups, and demonstrated significant differences between median time to healthcare utilisation. Conclusion. Our model identified patients at an increased risk of acute healthcare utilisation due to severe hypoglycaemia, hyperglycaemia, and DKA.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3