Baicalein Mediates Mitochondrial Autophagy via miR-30b and the NIX/BNIP3 Signaling Pathway in Parkinson’s Disease

Author:

Chen Min1,Peng Li1,Gong Ping1,Zheng Xiaoli1,Sun Tao2,Zhang Xiaoqiao1,Huo Jiangtao1ORCID

Affiliation:

1. Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China

2. Department of Surgery, Traditional Chinese Medicine Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili 556000, Guizhou, China

Abstract

Parkinson’s disease (PD) is regarded as a severe neurodegenerative disorder. Baicalein is involved in the treatment of PD. This study explored the mechanism of baicalein in PD. The PD rat model was established using 6-hydroxydopamine. The neurologic score, dopamine (DA) content, apoptotic cells, and neuronal damage were evaluated after rats were treated with baicalein. Autophagy in PD rats was inhibited using 3-methyladenine (3-MA). The mitochondrial membrane potential (MMP) and autophagy-related proteins (LC3, P62) were detected. Next, agomiR-30b was transfected into PD rats. The targeting relation between miR-30b and NIX was predicted and verified. Then, sh-NIX was transfected into PD rats, and the effects of miR-30b and NIX on MMP, LC3, and P62 were assessed. When miR-30b was overexpressed using agomiR-30b, the NIX and BNIP3 levels were detected. Baicalein increased the neurological score and restored DA content, neurons, MMP, and mitochondrial autophagy protein levels. Baicalein inhibited miR-30b expression and miR-30b targeted NIX. miR-30b upregulation or NIX silencing reversed the effect of baicalein on MMP and mitochondrial autophagy. Baicalein upregulated NIX and BNIP3 expressions, while miR-30b overexpression inhibited NIX and BNIP3 expressions. In summary, baicalein mediated mitochondrial autophagy and restored neuronal activity by downregulating miR-30b and activating the NIX/BNIP3 pathway, thus protecting against PD.

Publisher

Hindawi Limited

Subject

Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3