Deep-Learning-Based Cancer Profiles Classification Using Gene Expression Data Profile

Author:

Almarzouki Hatim Z1ORCID

Affiliation:

1. Department of Radiology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia

Abstract

The quantity of data required to give a valid analysis grows exponentially as machine learning dimensionality increases. In a single experiment, microarrays or gene expression profiling assesses and determines gene expression levels and patterns in various cell types or tissues. The advent of DNA microarray technology has enabled simultaneous intensive care of hundreds of gene expressions on a single chip, advancing cancer categorization. The most challenging aspect of categorization is working out many information points from many sources. The proposed approach uses microarray data to train deep learning algorithms on extracted features and then uses the Latent Feature Selection Technique to reduce classification time and increase accuracy. The feature-selection-based techniques will pick the important genes before classifying microarray data for cancer prediction and diagnosis. These methods improve classification accuracy by removing duplicate and superfluous information. The Artificial Bee Colony (ABC) technique of feature selection was proposed in this research using bone marrow PC gene expression data. The ABC algorithm, based on swarm intelligence, has been proposed for gene identification. The ABC has been used here for feature selection that generates a subset of features and every feature produced by the spectators, making this a wrapper-based feature selection system. This method’s main goal is to choose the fewest genes that are critical to PC performance while also increasing prediction accuracy. Convolutional Neural Networks were used to classify tumors without labelling them. Lung, kidney, and brain cancer datasets were used in the procedure’s training and testing stages. Using the cross-validation technique of k-fold methodology, the Convolutional Neural Network has an accuracy rate of 96.43%. The suggested research includes techniques for preprocessing and modifying gene expression data to enhance future cancer detection accuracy.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bladder cancer gene expression prediction with explainable algorithms;Neural Computing and Applications;2023-11-11

2. Breast Cancer Prognosis and Prediction through Gene Expression Analysis and the Hybrid Model of SVM and Logistic Regression;2023 World Conference on Communication & Computing (WCONF);2023-07-14

3. SVM‐ABC based cancer microarray (gene expression) hybrid method for data classification;Computational Intelligence;2023-06-27

4. Multilevel Feature Selection Method for Improving Classification of Microarray Gene Expression Data;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2023-02-01

5. Multiclass feature selection with metaheuristic optimization algorithms: a review;Neural Computing and Applications;2022-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3