Annual Patterns of Atmospheric Pollutions and Episodes over Cairo Egypt

Author:

Aboel Fetouh Y.1ORCID,El Askary H.234,El Raey M.1,Allali M.5ORCID,Sprigg W. A.3,Kafatos M.2

Affiliation:

1. Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, Egypt

2. Center for Excellence in Earth Observing, Schmid College of Science and Technology, Chapman University, Orange, CA, USA

3. School of Earth and Environmental Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA

4. Department of Environmental Sciences, Faculty of Science, Alexandria University, Moharem Bek, Alexandria 21522, Egypt

5. School of Computational Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA

Abstract

The Nile Delta major cities, particularly Cairo, experienced stagnant air pollution episodes, known as Black Cloud, every year over the past decade during autumn. Low-elevated thermal inversion layers play a crucial role in intensifying pollution impacts. Carbon monoxide, ozone, atmospheric temperature, water vapor, and methane measurements from the tropospheric emission spectrometer (TES) on board the Aura have been used to assess the dominant component below the inversion layer. In this study, time series analysis, autocorrelations, and cross correlations are performed to gain a better understanding of the connections between those parameters and their local effect. Satellite-based data were obtained for the years 2005–2010. The parameters mentioned were investigated throughout the whole year in order to study the possible episodes that take place in addition to their change from year to year. Ozone and carbon monoxide were the two major indicators to the most basic episodes that occur over Cairo and the Delta region.

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3