The Modulation of Interferon Regulatory Factor-1 via Caspase-1-Mediated Alveolar Macrophage Pyroptosis in Ventilator-Induced Lung Injury

Author:

Dai Minhui1ORCID,Li Qian2ORCID,Pan Pinhua1ORCID

Affiliation:

1. Respiratory Department, Xiangya Hospital, Central South University, China

2. Central Hospital, Changsha, Hunan Province, China

Abstract

Background. To examine the role of interferon regulatory factor-1 (IRF-1) and to explore the potential molecular mechanism in ventilator-induced lung injury. Methods. Wild-type C57BL/6 mice and IRF-1 gene knockout mice/caspase-1 knockout mice were mechanically ventilated with a high tidal volume to establish a ventilator-related lung injury model. The supernatant of the alveolar lavage solution and the lung tissues of these mice were collected. The degree of lung injury was examined by hematoxylin and eosin staining. The protein and mRNA expression levels of IRF-1, caspase-1 (p10), and interleukin (IL)-1β (p17) in lung tissues were measured by western blot and quantitative real-time polymerase chain reaction, respectively. Pyroptosis of alveolar macrophages was detected by flow cytometry and western blotting for active caspase-1 and cleaved GSDMD. An enzyme-linked immunosorbent assay was used to measure the levels of IL-1β, IL-18, IL-6, TNF-α, and high mobility group box protein 1 (HMGB-1) in alveolar lavage fluid. Results. IRF-1 expression and caspase-1-dependent pyroptosis in lung tissues of wild-type mice were significantly upregulated after mechanical ventilation with a high tidal volume. The degree of ventilator-related lung injury in IRF-1 gene knockout mice and caspase-1 knockout mice was significantly improved compared to that in wild-type mice, and the levels of GSDMD, IL-1β, IL-18, IL-6, and HMGB-1 in alveolar lavage solution were significantly reduced ( P < 0.05 ). The expression levels of caspase-1 (p10), cleaved GSDMD, and IL-1β (p17) proteins in lung tissues of IRF-1 knockout mice with ventilator-related lung injury were significantly lower than those of wild-type mice, and the level of pyroptosis of macrophages in alveolar lavage solution was significantly reduced. Conclusions. IRF-1 may aggravate ventilator-induced lung injury by regulating the activation of caspase-1 and the focal death of alveolar macrophages.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3