Fully Automated Segmentation of Lower Extremity Deep Vein Thrombosis Using Convolutional Neural Network

Author:

Huang Chen12ORCID,Tian Junru34ORCID,Yuan Chenglang34ORCID,Zeng Ping34ORCID,He Xueping12ORCID,Chen Hanwei12ORCID,Huang Yi12ORCID,Huang Bingsheng34ORCID

Affiliation:

1. Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China

2. Medical Imaging Institute of Panyu, Guangzhou, China

3. School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China

4. Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen, China

Abstract

Objective. Deep vein thrombosis (DVT) is a disease caused by abnormal blood clots in deep veins. Accurate segmentation of DVT is important to facilitate the diagnosis and treatment. In the current study, we proposed a fully automatic method of DVT delineation based on deep learning (DL) and contrast enhanced magnetic resonance imaging (CE-MRI) images. Methods. 58 patients (25 males; 28~96 years old) with newly diagnosed lower extremity DVT were recruited. CE-MRI was acquired on a 1.5 T system. The ground truth (GT) of DVT lesions was manually contoured. A DL network with an encoder-decoder architecture was designed for DVT segmentation. 8-Fold cross-validation strategy was applied for training and testing. Dice similarity coefficient (DSC) was adopted to evaluate the network’s performance. Results. It took about 1.5s for our CNN model to perform the segmentation task in a slice of MRI image. The mean DSC of 58 patients was 0.74± 0.17 and the median DSC was 0.79. Compared with other DL models, our CNN model achieved better performance in DVT segmentation (0.74± 0.17 versus 0.66±0.15, 0.55±0.20, and 0.57±0.22). Conclusion. Our proposed DL method was effective and fast for fully automatic segmentation of lower extremity DVT.

Funder

from Guangzhou Science and Technology Planning Project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3