AdipoRon Protects against Tubular Injury in Diabetic Nephropathy by Inhibiting Endoplasmic Reticulum Stress

Author:

Xiong Shan1ORCID,Han Yachun1ORCID,Gao Peng1ORCID,Zhao Hao1ORCID,Jiang Na1ORCID,Sun Lin1ORCID

Affiliation:

1. Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China

Abstract

Endoplasmic reticulum (ER) stress has been reported to play a pivotal role in diabetic nephropathy (DN). AdipoRon is a newly developed adiponectin receptor agonist that provides beneficial effects for diabetic mice; however, its underlying mechanism remains to be delineated. Here, we demonstrated increased expression levels of ER stress markers, accompanied by upregulated levels of proinflammatory cytokines and increased expression of collagen I, fibronectin, Bax, and cleaved caspase 3 in the kidneys of db/db mice compared with control mice. Decreased expression of adiponectin receptor 1 (AdipoR1) and phosphorylated 5AMP-activated kinase (p-AMPK) was also observed in the kidneys of db/db mice. However, these alterations were partially reversed by intragastric gavage with AdipoRon. In vitro, AdipoRon alleviated high-glucose-induced ER stress, oxidative stress, and apoptosis in HK-2 cells, a human tubular cell line. Moreover, AdipoRon restored the expression of AdipoR1 and p-AMPK in HK-2 cells exposed to high-glucose conditions. Additionally, these effects were partially abrogated by pretreatment with AdipoR1 siRNA, but this abrogation was ameliorated by cotreatment with AICAR, an AMPK activator. Furthermore, the effects of AdipoRon were also partially abolished by cotreatment with compound C. Together, these results suggest that AdipoRon exerts favorable effects on diabetes-induced tubular injury in DN by inhibiting ER stress mediated by the AdipoR1/p-AMPK pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3