Modeling and Numerical Analysis in 3D of Anisotropic and Nonlinear Mechanical Behavior of Tournemire Argillite under High Temperatures and Dynamic Loading

Author:

Marius Foguieng Wembe1,Luc Leroy Mambou Ngueyep23ORCID,François Ngapgue14

Affiliation:

1. Unité de Recherche de Mécanique et de Modélisation des Systèmes Physiques (UR-2MSP), Department of Physics, Dschang School of Science and Technology, University of Dschang, P.O. Box 67, Dschang, Cameroon

2. Laboratory of Material Sciences, Department of Physics, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon

3. Department of Mine Mineral Processing and Environment, School of Geology and Mining Engineering, University of Ngaoundéré, P.O. Box 115, Meiganga, Cameroon

4. Laboratory of Industrial and Systems Engineering Environment (LISIE), Department of Civil Engineering, Fotso Victor Institute of Technology, Dschang School of Science and Technology, University of Dschang, P.O. Box 134, Bandjoun, Cameroon

Abstract

This work proposes a model that takes into account the anisotropy of material with its inhomogeneity and geometrical and material nonlinearities. According to Newton’s second law, the investigations were carried out on the simultaneous effects of mechanical load and thermal treatment on the Tournemire argillite material. The finite difference method was used for the numerical resolution of the problem by the MATLAB 2015a software in order to determine the peak stress and strain of argillite as a function of material nonlinearity and demonstrated the inhomogeneity parameter Ω. The critical temperature from which the material damage was pronounced is 500°C. Indeed, above this temperature, the loss of rigidity of argillite reduced significantly the mechanical performance of this rock. Therefore, after 2.9 min, the stress reduction in X or Y direction was 75.5% with a peak stress value of 2500 MPa, whereas in Z direction, the stress reduction was 74.1% with a peak stress value of 1998 MPa. Meanwhile, knowing that the material inhomogeneity was between 2995 and 3256.010, there was an increase in peak stress of about 75%. However, the influence of the material nonlinearity was almost negligible. Thus, the geometrical nonlinearity allows having the maximal constant strain of about 1.25 in the direction of the applied dynamic mechanical force.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3