Electrodeposition of 4-Benzenesulfonic Acid onto a Graphite-Epoxy Composite Electrode for the Enhanced Voltammetric Determination of Caffeine in Beverages

Author:

Furtado Leonardo de A.1ORCID,Gonçalves Mariana C. de O.1ORCID,Inocêncio Carlos V. M.1ORCID,Pinto Edilson M.2ORCID,Martins Daniela de L.3ORCID,Semaan Felipe S.1ORCID

Affiliation:

1. Laboratório Aniy K. Ohara de Sensores Compósitos e Eletroanálise, Departamento de Química Analítica, Universidade Federal Fluminense, Campus do Valonguinho, Prédio do Instituto de Química, Centro, Niterói, RJ 24020-141, Brazil

2. FAIP, Marília, São Paulo, Brazil

3. Grupo de Pesquisas em Catálise e Síntese (Laboratório 413), Departamento de Química Orgânica, Universidade Federal Fluminense, Campus do Valonguinho, Prédio do Instituto de Química, Centro, Niterói, RJ 24020-141, Brazil

Abstract

Caffeine is widely present in food and drinks, such as teas and coffees, being also part of some currently commercialized medicines, but despite its enhancement on several functions of human body, its exceeding use can promote many health problems. In order to develop new fast approaches for the caffeine sensing, graphite-epoxy composite electrodes (GECE) were used as substrate, being modified by different diazonium salts, synthetized as their tetraflouroborate salts. An analytical method for caffeine quantification was developed, using sware wave voltammetry (SWV) in Britton–Robinson buffer pH 2.0. Detection limits for bare electrode and 4-benzenesulfonic modified electrode were observed circa 145 µmol·L−1 and 1.3 µmol·L−1, respectively. The results have shown that the modification shifts the oxidation peaks to lower potential. Kinetics of the reaction limited by diffusion was more expressive when caffeine was added to the solution, resulting in decreases of impedance, characterized by lower Rct. All results for caffeine determination were compared to a reference chromatographic procedure (HPLC), showing no statistical difference. Analytical parameters for validation were suitably determined according to local legislation, leading to a linear behaviour from 5 to 150 µmol·L−1; precision of 4.09% was evaluated based on the RDC 166/17, and accuracy was evaluated in comparison with the reference method, with recovery of 98.37 ± 2.58%.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3