The Potential Role of Voltage-Dependent Anion Channel in the Treatment of Parkinson’s Disease

Author:

He Yajie1,Wang Wenjun1ORCID,Yang Ting1,Thomas Elizabeth Rosalind2,Dai Rongyang1ORCID,Li Xiang1ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China

2. Department of Microbiology, North Eastern Indira Gandhi Institute of Health and Medical Science, 793018, Shillong, India

Abstract

Parkinson’s disease (PD) is a neurodegenerative disease second only to Alzheimer’s disease in terms of prevalence. Previous studies have indicated that the occurrence and progression of PD are associated with mitochondrial dysfunction. Mitochondrial dysfunction is one of the most important causes for apoptosis of dopaminergic neurons. Therefore, maintaining the stability of mitochondrial functioning is a potential strategy in the treatment of PD. Voltage-dependent anion channel (VDAC) is the main component in the outer mitochondrial membrane, and it participates in a variety of biological processes. In this review, we focus on the potential roles of VDACs in the treatment of PD. We found that VDACs are involved in PD by regulating apoptosis, autophagy, and ferroptosis. VDAC1 oligomerization, VDACs ubiquitination, regulation of mitochondrial permeability transition pore (mPTP) by VDACs, and interaction between VDACs and α-synuclein (α-syn) are all promising methods for the treatment of PD. We proposed that inhibition of VDAC1 oligomerization and promotion of VDAC1 ubiquitination as an effective approach for the treatment of PD. Previous studies have proven that the expression of VDAC1 has a significant change in PD models. The expression levels of VDAC1 are decreased in the substantia nigra (SN) of patients suffering from PD compared with the control group consisting of normal individuals by using bioinformatics tools. VDAC2 is involved in PD mainly through the regulation of apoptosis. VDAC3 may have a similar function to VDAC1. It can be concluded that the functional roles of VDACs contribute to the therapeutic strategy of PD.

Funder

Southwest Medical University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3