An Immune-Related Genetic Feature Depicted the Heterogeneous Nature of Lung Adenocarcinoma and Squamous Cell Carcinoma and Their Distinctive Predicted Drug Responses

Author:

Li Qiuyuan1,Jiang Yan1,Song Nan1,Zhou Bin1,Li Zhao1,Lin Lei1ORCID

Affiliation:

1. Department of Thoracic Surgery, Tongji University Shanghai Pulmonary Hospital, No. 507 Zhengmin Rd., Shanghai, China

Abstract

One of the primary causes of global cancer-associated mortality is lung cancer (LC). Current improvements in the management of LC rely mainly on the advancement of patient stratification, both molecularly and clinically, to achieve the maximal therapeutic benefit, while most LC screening protocols remain underdeveloped. In this research, we first employed two algorithms (ESTIMATE and xCell) to calculate the immune/stromal infiltration scores. This helped identify the altered immune infiltration landscapes in lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). Afterward, based on their immune-related characteristics, we successfully stratified the LUAD and LUSC into 2 and 3 clusters, respectively. Different from the conventional bioinformatic approaches that start from the investigation of differential expression of single genes, differentially enriched curated gene sets identified through gene set variation analyses (GSVA) were curated, and gene names were reconstructed afterward. Furthermore, weighted gene correlation network analyses (WGCNA) were used to reveal hub genes highly connected with the clustering process. Actual expression levels of critical hub genes among different clusters were compared and so were the functional pathways these genes enriched into. Lastly, a computational method was applied to predict and compare the responses of each cluster to primary therapeutic agents. The heterogeneity presented in our study, along with the drug responses expected for identified clusters, may shed light on future exploration of combination immunochemotherapy that facilitates the optimization of individualized therapy.

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3