Human Dental Follicle Cell-Derived Small Extracellular Vesicles Attenuate Temporomandibular Joint Cartilage Damage through Inhibiting HIF-2α

Author:

Mao Enyu1ORCID,Hu Yu2ORCID,Xin Yinzi2ORCID,Sun Zheyi1ORCID,Zhang Jun1ORCID,Li Song3ORCID

Affiliation:

1. Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China

2. Department of Orthodontics, Kunming Medical University Affiliated Stomatological Hospital, Kunming, China

3. Kunming Medical University, Kunming, China

Abstract

Mesenchymal stem cell (MSC)-based therapies for articular cartilage regeneration are effective mostly due to paracrine signals mediated by extracellular vesicles, especially small extracellular vesicles (sEV). However, it is unknown whether dental follicle cell-derived sEV (DFC-sEV) affect cartilage regeneration in temporomandibular joint osteoarthritis (TMJ-OA). In this study, the effects of DFC-sEV on IL-1β-induced mandibular condylar chondrocytes (MCCs) were determined using CCK8 assays, scratch assays, flow cytometry, and Western blot analysis of matrix synthesis and catabolic proteins. Furthermore, we used an abnormal occlusion-induced rat model and intra-articular injection of DFC-sEV, the pathological changes of which were observed by HE staining, safranin O staining, immunohistochemistry, and micro-CT analysis of subchondral bone loss. Gene set enrichment analysis (GSEA) was used to determine the related mechanism involved in the effect of DFC-sEV. Immunofluorescence analysis and Western blotting were used to evaluate the expression of HIF-1α, HIF-2α, MMP13, and VEGF in MCCs. Then, lentivirus-induced Epas1 overexpression and Western blot analysis of the downstream regulators of HIF-2α were performed. We found that DFC-sEV promoted MCCs proliferation and migration and protected against cartilage matrix destruction induced by IL-1β. In addition, DFC-sEV prevented cartilage destruction in an abnormal occlusion rat model. Furthermore, we found that DFC-sEV reduced the expression of HIF-1α and HIF-2α in vitro and in vivo and decreased the downstream regulators of HIF-2α, including MMP13 and VEGF. Our study indicated that DFC-sEV attenuated TMJ cartilage damage in vitro and in vivo, which might be involved in the regulation of HIF-2α.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3