Affiliation:
1. School of Naval Architecture and Civil Engineering, Jiangsu University of Science and Technology, Zhangjiagang 215600, China
2. Department of Civil Engineering, Tsinghua University, Beijing 100084, China
Abstract
An exact generalised formulation for the free vibration of shells of revolution with general shaped meridians and arbitrary boundary conditions is introduced. Starting from the basic shell theories, the vibration governing equations are obtained in the Hamilton form, from which dynamic stiffness is computed using the ordinary differential equations solver COLSYS. Natural frequencies and modes are determined by employing the Wittrick-Williams (W-W) algorithm in conjunction with the recursive Newton’s method, thus expanding the applications of the abovementioned techniques from one-dimensional skeletal structures to two-dimensional shells of revolution. A solution for solving the number of clamped-end frequenciesJ0in the W-W algorithm is presented for both uniform and nonuniform shell segment members. Based on these theories, a FORTRAN program is written. Numerical examples on circular cylindrical shells, hyperboloidal cooling tower shells, and spherical shells are given, and error analysis is performed. The convergence of the proposed method onJ0is verified, and comparisons with frequencies from existing literature show that the dynamic stiffness method is robust, reliable, and accurate.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献